martes, 21 de agosto de 2007



Protocolo.comp

Protocolo

- Asignar a cada valor (0,1) un estado (Prendido, Apagado)
- Dividir el tiempo en intervalos regulares
- Enviar señal de inicio (Opuesto al estado de la linea cuando no transmite para no confundir)
- Ponerse de acuardo en el orden de transmisión ( b0 a b7 o de b7 a b0)
- Bit de fin (Opuesto al bit de inicio)

Codigos.comp

Habitualmente los codigos binarios representan numeros (que a su vez representan valores que va asumiendo una variable fisica o electrica), o bien señales de control , de mando o de estado (informando sobre el estado de una operacion o proceso) . En este caso veremos la representacion de numeros. Aun asi, hay diversas correspondencias posibles.

1 0 1 0 0 1 1 0 1 0
- - - - -
x o x o o x x o x o
y n y n n y y n y n
El valor numérico representado en cada caso depende del valor asignado a cada símbolo. En un ordenador, los valores numéricos pueden ser representados por dos voltajes diferentes.De acuerdo con la representación acostumbrada de cifras que usan números árabes, los números binarios comúnmente son escritos usando los símbolos 0 y 1.


Codigos Alfanumericos

ASCII y EBCD


Muchas de las aplicaciones de las computadoras digitales requieren la manipulación de datos que constan no sólo de números, sino también de letras. Para representar cadenas de caracteres alfabéticos es necesario tener un código binario para el alfabeto. Además el mismo código binario debe representar números y algunos otros caracteres especiales.
Un código alfanumérico es un código binario de un grupo de elementos que constan de diez dígitos decimales, las 26 letras del alfabeto y cierto número de de símbolos especiales como el $. El número total de elementos en un grupo alfanumérico es mayor de 36. Por lo tanto debe codificarse con un mínimo de seis bits (2 6= 64, pero 2 3 = 32 no es suficiente).
Para superar los inconvenientes de la representación binaria real, se han desarrollado varios códigos en base binaria. Estos códigos ponen a disposición de la computadora letras y otros tipos de caracteres, así como números en forma binaria. Debido a que son códigos de longitud fija, la computadora puede con facilidad decir cuándo termina un carácter y empieza otro.El ASCII ( The American Standard Code for Information Interchange, Código Estándar estadounidense para el intercambio de información) es un código desarrollado por el Instituto Estadounidense de Normas y fue diseñado originalmente como un código de 7 bits que podía representar 128 (2 7 ) caracteres.
El ASCII, nace de la necesidad de representar digitos decimales, letras minúsculas, letras mayúsculas y gran número de caracteres adicionales que antes no se podían expresar usando las 64 combinaciones del BCD.
El ASCII se usa de forma muy extensa en la comunicación de datos y es el código que se utiliza para representar los datos internamente en las computadoras personales.
El código ASCII es un código consta de siete bits, pero en la práctica es un código de ocho bits debido a que de manera invariable se agrega un bit por paridad.

MONITOR.comp

Monitor

La tecnología en la fabricación de monitores es muy compleja y no es propósito ahora de profundizar en estos aspectos. Sí los vamos a tratar superficialmente para que sepáis cuáles son los parámetros que más os van a interesar a la hora de elegir vuestro monitor. Estos parámetros son los siguientes:

Tamaño

Son las dimensiones de la diagonal de la pantalla que se mide en pulgadas. Podemos tener monitores de 9, 14, 15, 17, 19, 20 y 21 ó más pulgadas. Los más habituales son los de 15 pulgadas aunque cada vez son más los que apuestan por los de 17 pulgadas, que pronto pasarán a ser el estándar. Los de 14 pulgadas se usan cada vez menos. Todo esto se debe a que las tarjetas gráficas que se montan ahora soportan fácilmente resoluciones de hasta 1600x1280 pixels


Resolución

Un pixel es la unidad mínima de información gráfica que se puede mostrar en pantalla. Cuantos más pixels pueda mostrar el monitor de más resolución dispondremos, quiere decir que más elementos nos cabrán en ella. Si trabajas con Windows la resolución ampliada es fundamental, puedes tener mas iconos en pantalla, puedes tener abiertas varias aplicaciones y verlas a la vez, sin tener que maximizar cada una cuando cambies a ellas, etc. La resolución está íntimamente relacionada con las dimensiones del monitor, pero no podemos guiarnos fiablemente por esto. Por ejemplo, hay algún monitor de 15 pulgadas que alcanza resoluciones de hasta 1600 x 1280, pero las dimensiones físicas de la pantalla hacen que todo se vea muy reducido, siendo un engorro y además pagamos por unas características que nunca utilizaremos. Para estas resoluciones ampliadas le recomendamos: un monitor de 15 pulgadas para 1024 x 768, y uno de 17 o 20 pulgadas para 1280 x 1024 pixels.

La alternativa LCD

Últimamente se habla del avance de la tecnología LCD o cristal líquido, llegando incluso a citarse como posible alternativa de futuro frente al tradicional CRT. Ventajas como el ahorro de consumo y de espacio (LCD posibilita la fabricación de pantalla extra-planas, de muy poca profundidad), así como la prácticamente nula emisión de radiaciones, aportan un gran interés a este tipo de dispositivos. No obstante, su elevado costo unido a los continuos avances en la tecnología CRT hacen que, por el momento, ésta última sea la opción más recomendable.

El teclado.comp

El teclado nos permite comunicarnos con la computadora e ingresar la información. Es fundamental para utilizar cualquier aplicación. El teclado más común tiene 102 teclas, agrupadas en cuatro bloques: teclado alfanumérico, teclado numérico, teclas de función y teclas de control. Se utiliza como una máquina de escribir, presionando sobre la tecla que queremos ingresar. Algunas teclas tienen una función predeterminada que es siempre la misma, pero hay otras teclas cuya función cambia según el programa que estemos usando.


Las partes del teclado

El teclado alfanumérico: Es similar al teclado de la máquina de escribir. Tiene todas las teclas del alfabeto, los diez dígitos decimales y los signos de puntuación y de acentuación.

El teclado numérico: Para que funciones el teclado numérico debe estar activada la función "Bloquear teclado numérico". Caso contrario, se debe pulsar la tecla [Bloq Lock] o [Num Lock] para activarlo. Al pulsarla podemos observar que, en la esquina superior derecha del teclado, se encenderá la lucecita con el indicador [Bloq Num] o [Num Lock]. Se parece al teclado de una calculadora y sirve para ingresar rápidamente los datos numéricos y las operaciones matemáticas más comunes: suma, resta, multiplicación y división.


Las teclas de Función

Estas teclas, de F1 a F12, sirven como "atajos" para acceder más rápidamente a determinadas funciones que le asignan los distintos programas. en general, la tecla F1 está asociada a la ayuda que ofrecen los distintos programas, es decir que, pulsándola, se abre la pantalla de ayuda del programa que se esté usando en este momento.


Las teclas de Control

Si estamos utilizando un procesador de texto, sirve para terminar un párrafo y pasar a un nuevo renglón. Si estamos ingresando datos, normalmente se usa para confirmar el dato que acabamos de ingresar y pasar al siguiente. Estas teclas sirven para mover el cursor según la dirección que indica cada flecha. Sirve para retroceder el cursor hacia la izquierda, borrando simultáneamente los caracteres. Si estamos escribiendo en minúscula, al presionar esta tecla simultáneamente con una letra, esta última quedará en mayúscula, y viceversa, si estamos escribiendo en mayúscula la letra quedará minúscula. Es la tecla de tabulación. En un procesador de texto sirve para alinear verticalmente tanto texto como números.
Esta tecla te permite insertar un carácter de manera que todo lo que escribamos a continuación se irá intercalando entre lo que ya tenemos escrito. Fija el teclado alfabético en mayúscula. al pulsarla podemos observar que, en la esquina superior del teclado, se encenderá la lucecita con el indicador [Blog Mayús] o [Caps Lock]. Mientras es teclado de encuentra fijado en mayúscula, al pulsar la tecla de una letra se pondrá automáticamente en mayúscula. Para desactivarla basta con volverla a pulsar. La tecla alternar, al igual que la tecla control, se usa para hacer combinaciones y lograr así ejecutar distintas acciones según el programa que estemos usando. En un procesador de texto sirve para borrar el carácter ubicado a la derecha del cursor. La tecla de control se usa en combinación con otras teclas para activar distintas opciones según el programa que se esté utilizando.
Tanto el teclado como el ratón del ordenador nos permiten introducir datos o información en el sistema. De poco nos sirven si no tenemos algún dispositivo con el que comprobar que esa información que estamos suministrando es correcta. Los monitores muestran tanto la información que aportamos, como la que el ordenador nos comunica. Desde los primeros que aparecieron con el fósforo verde, la tecnología ha evolucionado junto con la fabricación de nuevas tarjetas gráficas. Ahora no se concibe un ordenador sin un monitor en color. Ahora la "guerra" está en el tamaño y en la resolución que sean capaces de mostrar.

memorias.comp

Memoria RAM
La memoria principal o RAM, abreviatura del inglés Randon Access Memory, es el dispositivo donde se almacenan temporalmente tanto los datos como los programas que la CPU está procesando o va a procesar en un determinado momento. Por su función, es una amiga inseparable del microprocesador, con el cual se comunica a través de los buses de datos. Por ejemplo, cuando la CPU tiene que ejecutar un programa, primero lo coloca en la memoria y recién y recién después lo empieza a ejecutar. lo mismo ocurre cuando necesita procesar una serie de datos; antes de poder procesarlos los tiene que llevar a la memoria principal. Esta clase de memoria es volátil, es decir que, cuando se corta la energía eléctrica, se borra toda la información que estuviera almacenada en ella. Por su función, la cantidad de memoria RAM de que disponga una computadora es una factor muy importante; hay programas y juegos que requieren una gran cantidad de memoria para poder usarlos. Otros andarán más rápido si el sistema cuenta con más memoria RAM.


La memoria Caché

Dentro de la memoria RAM existe una clase de memoria denominada Memoria Caché que tiene la característica de ser más rápida que las otras, permitiendo que el intercambio de información entre el procesador y la memoria principal sea a mayor velocidad.


Memoria de sólo lectura o ROM

Su nombre viene del inglés Read Only Memory que significa Memoria de Solo Lectura ya que la información que contiene puede ser leída pero no modificada. En ella se encuentra toda la información que el sistema necesita para poder funcionar correctamente ya que los fabricantes guardan allí las instrucciones de arranque y el funcionamiento coordinado de la computadora. No son volátiles, pero se pueden deteriorar a causa de campos magnéticos demasiados potentes. Al encender nuestra computadora automáticamente comienza a funcionar la memoria ROM. Por supuesto, aunque se apague, esta memoria no se borra. El BIOS de una PC (Basic Input Operative System) es una memoria ROM, pero con la facultad de configurarse según las características particulares de cada máquina. Esta configuración se guarda en la zona de memoria RAM que posee este BIOS y se mantiene sin borrar cuando se apaga la PC gracias a una pila que hay en la placa principal. Cuando la pila se agota se borra la configuración provocando, en algunos equipos, que la máquina no arranque.

CPU.comp

Unidad central de proceso o CPU

(Conocida por sus siglas en inglés, CPU), circuito microscópico que interpreta y ejecuta instrucciones. La CPU se ocupa del control y el proceso de datos en las computadoras. Generalmente, la CPU es un microprocesador fabricado en un chip, un único trozo de silicio que contiene millones de componentes electrónicos. El microprocesador de la CPU está formado por una unidad aritmético-lógica que realiza cálculos y comparaciones, y toma decisiones lógicas (determina si una afirmación es cierta o falsa mediante las reglas del álgebra de Boole); por una serie de registros donde se almacena información temporalmente, y por una unidad de control que interpreta y ejecuta las instrucciones. Para aceptar órdenes del usuario, acceder a los datos y presentar los resultados, la CPU se comunica a través de un conjunto de circuitos o conexiones llamado bus. El bus conecta la CPU a los dispositivos de almacenamiento (por ejemplo, un disco duro), los dispositivos de entrada (por ejemplo, un teclado o un mouse) y los dispositivos de salida (por ejemplo, un monitor o una impresora).


Funcionamiento de la CPU

Cuando se ejecuta un programa, el registro de la CPU, llamado contador de programa, lleva la cuenta de la siguiente instrucción, para garantizar que las instrucciones se ejecuten en la secuencia adecuada. La unidad de control de la CPU coordina y temporiza las funciones de la CPU, tras lo cual recupera la siguiente instrucción desde la memoria. En una secuencia típica, la CPU localiza la instrucción en el dispositivo de almacenamiento correspondiente.

La instrucción viaja por el bus desde la memoria hasta la CPU, donde se almacena en el registro de instrucción. Entretanto, el contador de programa se incrementa en uno para prepararse para la siguiente instrucción. A continuación, la instrucción actual es analizada por un descodificador, que determina lo que hará la instrucción. Cualquier dato requerido por la instrucción es recuperado desde el dispositivo de almacenamiento correspondiente y se almacena en el registro de datos de la CPU. A continuación, la CPU ejecuta la instrucción, y los resultados se almacenan en otro registro o se copian en una dirección de memoria determinada.

Introducción.lahistoriadelacomputadora.comp

LA HISTORIA DE LA COMPUTADORA
INTRODUCCION
La computadora es un invento reciente, que no ha cumplido ni los cien años de existencia desde su primera generación. Sin embargo es un invento que ha venido a revolucionar tecnológicamente.
Actualmente su evolución es continua, debido a que existen empresas en el campo de la tecnología que se encargan de presentarnos nuevas propuestas en un corto tiempo. Conozcamos un poco más acerca de los orígenes de la computadora.
Primera Generación (1951 a 1958)

Las computadoras de la primera Generación emplearon bulbos para procesar información. Los operadores ingresaban los datos y programas en código especial por medio de tarjetas perforadas. El almacenamiento interno se lograba con un tambor que giraba rápidamente, sobre el cual un dispositivo de lectura/escritura colocaba marcas magnéticas. Esas computadoras de bulbos eran mucho más grandes y generaban más calor que los modelos contemporáneos.
Eckert y Mauchly contribuyeron al desarrollo de computadoras de la Primera Generación formando una compañía privada y construyendo UNIVAC I, que el Comité del censo utilizó para evaluar el censo de 1950. La IBM tenía el monopolio de los equipos de procesamiento de datos a base de tarjetas perforadas y estaba teniendo un gran auge en productos como rebanadores de carne, básculas para comestibles, relojes y otros artículos; sin embargo no había logrado el contrato para el Censo de 1950.
Comenzó entonces a construir computadoras electrónicas y su primera entrada fue con la IBM 701 en 1953. Después de un lento pero excitante comienzo la IBM 701 se convirtió en un producto comercialmente viable. Sin embargo en 1954 fue introducido el modelo IBM 650, el cual es la razón por la que IBM disfruta hoy de una gran parte del mercado de las computadoras. La administración de la IBM asumió un gran riesgo y estimó una venta de 50 computadoras.
Este número era mayor que la cantidad de computadoras instaladas en esa época en E.U. De hecho la IBM instaló 1000 computadoras. El resto es historia. Aunque caras y de uso limitado las computadoras fueron aceptadas rápidamente por las Compañías privadas y de Gobierno. A la mitad de los años 50 IBM y Remington Rand se consolidaban como líderes en la fabricación de computadoras.

Segunda Generación (1959-1964)

Transistor Compatibilidad Limitada
El invento del transistor hizo posible una nueva Generación de computadoras, más rápidas, más pequeñas y con menores necesidades de ventilación. Sin embargo el costo seguía siendo una porción significativa del presupuesto de una Compañía. Las computadoras de la segunda generación también utilizaban redes de núcleos magnéticos en lugar de tambores giratorios para el almacenamiento primario. Estos núcleos contenían pequeños anillos de material magnético, enlazados entre sí, en los cuales podían almacenarse datos e instrucciones.
Los programas de computadoras también mejoraron. El COBOL desarrollado durante la 1era generación estaba ya disponible comercialmente. Los programas escritos para una computadora podían transferirse a otra con un mínimo esfuerzo. El escribir un programa ya no requería entender plenamente el hardware de la computación.
Las computadoras de la 2da Generación eran sustancialmente más pequeñas y rápidas que las de bulbos, y se usaban para nuevas aplicaciones, como en los sistemas para reservación en líneas aéreas, control de tráfico aéreo y simulaciones para uso general. Las empresas comenzaron a aplicar las computadoras a tareas de almacenamiento de registros, como manejo de inventarios, nómina y contabilidad.
La marina de E.U. utilizó las computadoras de la Segunda Generación para crear el primer simulador de vuelo. (Whirlwind I). HoneyWell se colocó como el primer competidor durante la segunda generación de computadoras. Burroughs, Univac, NCR, CDC, HoneyWell, los más grandes competidores de IBM durante los 60s se conocieron como el grupo BUNCH.

Tercera Generación (1964-1971)

Circuitos Integrados, Compatibilidad con Equipo Mayor, Multiprogramación, Minicomputadora
Las computadoras de la tercera generación emergieron con el desarrollo de los circuitos integrados (pastillas de silicio) en las cuales se colocan miles de componentes electrónicos, en una integración en miniatura. Las computadoras nuevamente se hicieron más pequeñas, más rápidas, desprendían menos calor y eran energéticamente más eficientes.
Antes del advenimiento de los circuitos integrados, las computadoras estaban diseñadas para aplicaciones matemáticas o de negocios, pero no para las dos cosas. Los circuitos integrados permitieron a los fabricantes de computadoras incrementar la flexibilidad de los programas, y estandarizar sus modelos.
La IBM 360 una de las primeras computadoras comerciales que usó circuitos integrados, podía realizar tanto análisis numéricos como administración ó procesamiento de archivos. Los clientes podían escalar sus sistemas 360 a modelos IBM de mayor tamaño y podían todavía correr sus programas actuales. Las computadoras trabajaban a tal velocidad que proporcionaban la capacidad de correr más de un programa de manera simultánea (multiprogramación).
Por ejemplo la computadora podía estar calculando la nomina y aceptando pedidos al mismo tiempo. Minicomputadoras, Con la introducción del modelo 360 IBM acaparó el 70% del mercado, para evitar competir directamente con IBM la empresa Digital Equipment Corporation DEC redirigió sus esfuerzos hacia computadoras pequeñas. Mucho menos costosas de comprar y de operar que las computadoras grandes, las mini computadoras se desarrollaron durante la segunda generación pero alcanzaron su mayor auge entre 1960 y 1970.

Cuarta Generación (1971 a la fecha)

Microprocesador, Chips de memoria, Microminiaturización
Dos mejoras en la tecnología de las computadoras marcan el inicio de la cuarta generación: el reemplazo de las memorias con núcleos magnéticos, por las de chips de silicio y la colocación de Muchos más componentes en un Chip: producto de la microminiaturización de los circuitos electrónicos. El tamaño reducido del microprocesador y de chips hizo posible la creación de las computadoras personales (PC Personal Computer).
Hoy en día las tecnologías LSI (Integración a gran escala) y VLSI (integración a muy gran escala) permiten que cientos de miles de componentes electrónicos se almacenen en un chip. Usando VLSI, un fabricante puede hacer que una computadora pequeña rivalice con una computadora de la primera generación que ocupaba un cuarto completo.
Hardware: abarca todas las piezas físicas de un ordenador:
1: Monitor
2: Placa base
3: Procesador
4: Disco duro
5: Memoria ROM
6: Memoria RAM
7: Placas de expansión
8: Fuente eléctrica
9: Unidad de almacenamiento óptico
10: Puertos ATA
11: Teclado
12: Mouse

Software se refiere a los programas y datos almacenados en un ordenador.
Los programas dan instrucciones para realizar tareas al hardware o sirven de conexión con otro software.
Los datos solamente existen para su uso eventual por un programa.

estructura funcional.tel


Codigos.tel

CODIGOS DE PAIS.
Para la mayor parte de los países del mundo, y sus territorios dependientes, esta norma define:

- un código de dos letras (ISO 3166-1 alfa-2)
- un código de tres letras (ISO 3166-1 alfa-3)
- un código numérico de tres cifras (ISO 3166-1 numérico)

El código de dos letras se utiliza como base para algún otro código o aplicación, como:
- en los códigos de divisas ISO 4217.
- en los códigos de país de los nombres de dominio de Internet de nivel superior: lista de dominios de Internet.

OTROS CÓDIGOS DE PAÍS.

- Los códigos de tres letras del Comité Olímpico Internacional (COI), que se usan en pruebas deportivas: lista de los códigos nacionales del COI
- La FIFA también ha implementado un sistema de códigos de tres letras.
- El sistema de codificación para placas de matrícula bajo las Convenciones de las Naciones Unidas para el Tráfico Rodado de 1949 y 1968 (distinción de signos de vehículos en el tráfico internacional): lista de códigos de placas de matrícula internacional
- Los códigos de dos letras de la Norma Federal para el Procesado de Información (Federal Information Processing Standard, FIPS usado por el gobierno de Estados Unidos de América y en el CIA World Factbook
- De la Unión Internacional de Telecomunicaciones (UIT):


* los códigos de llamada telefónica internacional E.164 de 1-3 cifras: lista de códigos telefónicos,
* los códigos de país para móviles (mobile country codes, MCC), para direcciones de telefonía móvil/sin hilos,
* los primeros caracteres de las señales de llamada en las estaciones de radio (marítima, aeronáutica, radioaficionados, radiodifusión, etc.) definen el país: los prefijos de la UIT,
* los códigos de países miembros la UIT en letras,
* los códigos de tres cifras usados para identificar los países en las radio transmisiones móviles marítimas, llamados número de identificación marítima
Otras codificaciones
Las siguientes, pueden representar países:
- Las cifras iniciales del número ISBN son identificadores para países, zonas, o regiones lingüísticas.
- Las tres primeras cifras del número de artículo en los códigos de barras EAN-UCC.

Timbres y Tonos.tel

Marcación por tonos
Como la línea alimenta el micrófono a 48 V, esta tensión se puede utilizar para alimentar, también, circuitos electrónicos. Uno de ellos es el marcador por tonos. Maneja un teclado que contiene los dígitos y alguna tecla más (* y #), decodificando la tecla y produciendo dos tonos simultáneos para cada pulsación. La frecuencia de estos tonos varía entre europa (CCITT - UIC-T) y EEUU. Estos circuitos podían ser tanto bipolares (I2L, normalmente) como cmos y añadían nuevas prestaciones como repetición del último número (redial) o memorias para marcación rápida pulsando una sola tecla.




Timbre
El timbre electromecánico consistente en un electroimán que acciona un badajo que golpea la campana a la frecuencia de línea se ha visto sustituido por generadores de llamada electrónicos que, igual que el timbre electromeo, funcionan con la alta tensión de llamada (120 a 150 V de corriente alterna). Suelen incorporar un oscilador de periodo en torno a 0'5 s que conmuta la salida entre dos tonos producidos por otro oscilador. El circuito va conectado a un pequeño altavoz piezoeléctrico. Resulta curioso que se busquen tonos agradables para sustituir la estridencia del timbre electromecánico, cuando éste había sido elegido precisamente por ser muy molesto para obligar así al usuario a atender la llamada.

Circuitos.tel


Circuito de conversación
El circuito de conversación consta de cuatro componentes principales: la bobina híbrida, el auricular, el micrófono de carbón y una impedancia de 600Ω para equilibrar la híbrida. Estos componentes se conectan según el circuito de la figura 1. La señal que se origina en el micrófono se reparte a partes iguales entre L1 y L2. La primera va a la línea y la segunda se pierde en la carga, pero L1 y L2 inducen corrientes iguales y de sentido contrario en L3, que se cancelan entre sí, evitando que la señal del micrófono alcance el auricular.

La señal que viene por la línea recorre L1, que induce una corriente igual en L2, de modo que por el micrófono no circula señal. Sin embargo, tanto L1 como L2 inducen en L3 la corriente que se lleva al auricular.

El circuito de conversación real es algo más complejo: añade un varistor a la entrada para mantener la polarización del micrófono a un nivel constante, independientemente de lo lejos que esté la central local, y conecta el auricular a la impedancia de carga para que el usuario tenga una pequeña realimentación y pueda oír lo que dice. Sin ella, tendería a gritar.




Circuito de marcación
Finalmente, el circuito de marcación es mecánico, formado por el disco que, cuando retrocede, acciona un interruptor el número de veces que corresponde al dígito. El cero tiene 10 pulsos. El timbre va conectado a la línea a través del "gancho", que es un conmutador que se acciona al descolgar. Una corriente alterna de 120 a 150 V en la línea hace sonar el timbre.

La Historia del telefono.tel

El 14 de febrero de 1876 Alexander Graham Bell solicitó en Estados Unidos una patente para un teléfono electromagnético. Aquel mismo día otro inventor, Elisha Gray, hizo una presentación similar, pero el aparato de Bell demostró ser el mejor y se convirtió en un éxito. Ambos, sin embargo, habían culminado un largo proceso en la historia humana que, paradójicamente, tendría un desarrollo vertiginoso a partir de entonces. Si consideramos que la función de la telefonía es hacer audible el sonido, ante todo la palabra hablada, a largas distancias, deberemos recordar como uno de los pioneros a Robert Hook, quien ya en 1667 describía cómo un hilo muy tenso podía transmitir sonido por distancias bastante largas. Los intentos fueron muchos, mas sería el progreso del electromagnetismo durante el siglo XIX el que asentaría las bases para el uso práctico de la telefonía. A principios de 1800, investigadores de muchos paises estudiaban los fenómenos eléctricos y magnéticos.
En 1878 La primera central telefónica del mundo se puso en servicio durante 1878 en New Haven, Estados Unidos; comprendía un cuadro conmutador y 21 abonados. Un eslabón complementado en 1892, cuando Almon B. Strowger construyó el primer cuadro conmutador telefónico automático. Este empresario de pompas fúnebres que vivía en Kansas City quería evitar, a través de su invento, que la telefonista de la ciudad y esposa de su principal competidor se "equivocara" al conectar las llamadas de sus clientes. Más o menos por la misma época, el "progreso" llegó a la Argentina. En la calurosa mañana del martes 4 de enero de 1881, el técnico francés Víctor Anden llamó a la puerta de una gran cásona ubicada sobre la calle Florida, entre Tucumán y Viamonte. Su dueño, el doctor Bernardo de Irigoyen, ministro de Relaciones Exteriores, estaba por salir para la Casa de Gobierno, pero antes de bacerlo vería colocado el primer teléfono del país. El mismo día se instalaron también otros teléfonos en las residencias del presidente de la Nación, general Roca; del presidente de la Municipalidad de Buenos Aires, Marcelo Torcuato de Alvear; del Ministro de Ejército y Marina, general Benjamín Victorica, y en instituciones como la Sociedad Rural, el Club del Progreso y el Jockey Club hasta totalizar el número de veinte. Puede calcularse que hacia fines de 1881 ya pasaban de doscientos los abonados telefónicos de Buenos Aires, y en 1883 ya se habían instalado en la ciudad varias oficinas telefónicas en distintos barrios.
1960 El teléfono tiene un disco para marcar directamente el número deseado. La primera central automática española se creó en 1923.
1980 El teléfono se moderniza. En España casi todas las familias lo tienen ya.
1990 El teléfono inalámbrico funciona con batería. Se puede llamar a una persona y hablar con ella desplazándose por cualquier lugar de la casa. Se coloca en un soporte para recargarlo.